Dynamics of HIV infection of CD4+ T cells.
نویسندگان
چکیده
We examine a model for the interaction of HIV with CD4+ T cells that considers four populations: uninfected T cells, latently infected T cells, actively infected T cells, and free virus. Using this model we show that many of the puzzling quantitative features of HIV infection can be explained simply. We also consider effects of AZT on viral growth and T-cell population dynamics. The model exhibits two steady states, an uninfected state in which no virus is present and an endemically infected state, in which virus and infected T cells are present. We show that if N, the number of infectious virions produced per actively infected T cell, is less a critical value, Ncrit, then the uninfected state is the only steady state in the nonnegative orthant, and this state is stable. For N > Ncrit, the uninfected state is unstable, and the endemically infected state can be either stable, or unstable and surrounded by a stable limit cycle. Using numerical bifurcation techniques we map out the parameter regimes of these various behaviors. oscillatory behavior seems to lie outside the region of biologically realistic parameter values. When the endemically infected state is stable, it is characterized by a reduced number of T cells compared with the uninfected state. Thus T-cell depletion occurs through the establishment of a new steady state. The dynamics of the establishment of this new steady state are examined both numerically and via the quasi-steady-state approximation. We develop approximations for the dynamics at early times in which the free virus rapidly binds to T cells, during an intermediate time scale in which the virus grows exponentially, and a third time scale on which viral growth slows and the endemically infected steady state is approached. Using the quasi-steady-state approximation the model can be simplified to two ordinary differential equations the summarize much of the dynamical behavior. We compute the level of T cells in the endemically infected state and show how that level varies with the parameters in the model. The model predicts that different viral strains, characterized by generating differing numbers of infective virions within infected T cells, can cause different amounts of T-cell depletion and generate depletion at different rates. Two versions of the model are studied. In one the source of T cells from precursors is constant, whereas in the other the source of T cells decreases with viral load, mimicking the infection and killing of T-cell precursors.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
A nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
متن کاملNumerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells
In this article, we present a fractional order HIV-1 infection model of CD4+ T-cell. We analyze the effect of the changing the average number of the viral particle N with initial conditions of the presented model. The Laplace Adomian decomposition method is applying to check the analytical solution of the problem. We obtain the solutions of the fractional order HIV-1 model in the form of infini...
متن کاملNumerical solution of a fractional order model of HIV infection of CD4+T cells.
In this paper we consider a fractional order model of HIV infection of CD4+T cells and we transform this fractional order system of ordinary differential equations to a system of weakly singular integral equations. Afterwards we propose a Nystrom method for solving resulting system, convergence result and order of convergence is obtained by using conditions of existence and uniqueness of solut...
متن کاملA new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...
متن کاملConvergence of the multistage variational iteration method for solving a general system of ordinary differential equations
In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.
متن کاملEvaluation of clinical course and laboratory findings in HIV/HTLV-1 co-infection compare with HIV mono infection
Background: In the last 10 years, co-infection of human immunodeficiency virus/human T-cell leukemia virus-1 (HIV/HTLV-1) has emerged as a worldwide health problem. These viruses has the same route to infect human but different effects on CD4 positive T-cells. There was controversial results about the influence of co-infection HIV/HTLV-1 pathogenesis. This study compared clinical course and lab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 114 1 شماره
صفحات -
تاریخ انتشار 1993